The development of the world energy system in the reference projection
The reference projection
The Reference projection describes a continuation of existing economic and technological trends, including short-term constraints on the development of oil and gas production and moderate climate policies for which it is assumed that Europe keeps the lead.
World energy consumption
The total energy consumption in the world is expected to increase to 22 Gtoe per year in 2050, from the current 10 Gtoe per year. Fossil fuels provide 70% of this total (coal and oil 26% each, natural gas 18%) and non-fossil sources 30%; the non-fossil share is divided almost equally between renewable and nuclear energy.
Energy efficiency improvement
The size of the world economy in 2050 is four times as large as now, but world energy consumption only increases by a factor of 2.2. The significant improvement in energy efficiency arises partly from autonomous technological or structural changes in the economy, partly from energy efficiency policies and partly from the effects of much higher energy prices.
North-South balance in energy consumption
Energy demand grows strongly in the developing regions of the world, where basic energy needs are at present hardly satisfied. The consumption in these countries overtakes that of the industrialised world shortly after 2010 and accounts for two thirds of the world total in 2050.
Oil and gas production profiles
Conventional oil production levels off after 2025 at around 100 Mbl/d. The profile forms a plateau rather than the “peak” that is much discussed today. Non-conventional oils provide the increase in total liquids, to about 125 Mbl/d in 2050. Natural gas shows a similar pattern, with a delay of almost ten years.
Oil and gas prices
The prices of oil and natural gas on the international market increase steadily, and reach 110 $/bl for oil and 100 $/boe for gas in 2050. The high prices mostly reflect the increasing resource scarcity.
Electricity: the comeback of coal, the take-off of renewable sources and the revival of nuclear energy
The growth in electricity consumption keeps pace with economic growth and in 2050, total electricity production is four times greater than today. Coal returns as an important source of electricity and is increasingly converted using new advanced technologies. The price of coal is expected to reach about 110 $/ton in 2050. The rapid increase of renewable sources and nuclear energy begins after 2020 and is massive after 2030; it implies a rapid deployment of new energy technologies, from large offshore wind farms to “Generation 4” nuclear power plants.
CO2 emissions
The deployment of non-fossil energy sources to some extent compensates for the comeback of coal in terms of CO2 emissions, which increase almost proportionally to the total energy consumption. The resulting emission profile corresponds to a concentration of CO2 in the atmospheric between 900 to 1000 ppmv in 2050. This value far exceeds what is considered today as an acceptable range for stabilisation of the concentration.
The European energy system in the reference projection
Energy demand trends
Total primary energy consumption in Europe increases only a little from 1.9 Gtoe / year today to 2.6 Gtoe / year in 2050. Until 2020, the primary fuel-mix is rather stable, except for a significant increase in natural gas consumption. Thereafter the development of renewable energy sources accelerates and nuclear energy revives. In 2050 non-fossil energy sources, nuclear and renewable provide 40% of the primary energy consumption, much above the present 20%. The consumption of electricity keeps pace with economic growth; the market for electricity remains dynamic because of new electricity uses, especially in the Information and Communication Technologies.
CO2 emissions
This combination of modest climate policies and new trends in electricity supply results in CO2 emissions that are almost stable up to 2030 and then decrease until 2050. At that date CO2 emissions in Europe are 10% lower than today.
Electricity production
Because of relatively strong climate policies, European electricity production is 70% decarbonised in 2050; renewable and nuclear sources provide 60% of the total generation of electricity and a quarter of thermal generation is equipped with CO2 capture and storage systems.
Hydrogen production
Hydrogen develops after 2030, with modest although not negligible results: it provides in 2050 the equivalent of 10% of final electricity consumption.
Energy trends in Europe
In Europe, the total consumption of energy is almost stable until 2030, but then starts to increase[4]. This is in a sense a statistical phenomenon arising from the high primary heat input of nuclear power. Renewable sources provide 22% and nuclear 30% of the European energy demand in 2050, bringing the share of fossil fuels to less than 50%. Three quarters of power generation is based on nuclear and renewable sources and half of thermal power generation is in plants with CO2 capture and storage. Hydrogen delivers a quantity of energy equivalent to 15% of that delivered by electricity. By 2050, half of the total building stock is composed of low energy buildings and a quarter of very low energy buildings[5]. More than half of vehicles are low emission or very low emission vehicles (e.g. electricity or hydrogen powered cars).